Bulletin of Health, Science and Technology
(Rangsit University)

Advisory Board

Rangsit University, Thailand

Assistant Professor, Rangsit University, Thailand
Professor, College of Pharmacy,IPS Academy, India
Assistant Professor, Rangsit University, Thailand
Associate Professor, Rangsit University, Thailand
Assistant Professor, Rangsit University, Thailand
Clinical Professor, Rangsit University, Thailand
Clinical Professor, Rangsit University, Thailand
Associate Professor, Rangsit University, Thailand

Rangsit University, Thailand

Professor Emeritus, Rangsit University, Thailand
Rangsit University, Thailand
Assistant Professor, Rangsit University, Thailand
Professor Emeritus, University of Illinois, USA
Professor, Rangsit University, Thailand
Professor, National Science and Technology Development Agency (NSTDA), Thailand
Professor, Mahidol University, Thailand
Professor Emeritus, Influenza Foundation, Thailand
Associate Professor, Mahidol University, Thailand
Professor, Mahidol University, Thailand
Professor, University of Hawai‘i at Hilo, USA

Editor

Rangsit University, Thailand

Associate Editor

Assistant Professor, Rangsit University, Thailand

Managing Director

Rangsit University, Thailand

Managing Staff

Assistant Professor, Rangsit University, Thailand
Rangsit University, Thailand
Assistant Professor, Rangsit University, Thailand
Associate Professor, Rangsit University, Thailand
Rangsit University, Thailand
Clinical Professor, Rangsit University, Thailand
Rangsit University, Thailand
Rangsit University, Thailand
Assistant Professor, Rangsit University, Thailand
Associate Professor, Rangsit University, Thailand
Clinical Professor, Rangsit University, Thailand
Rangsit University, Thailand
Rangsit University, Thailand
Chainut Chongruk
Brian Lockwood, Ph.D.
Neelam Balekar, Ph.D.
Pratham Chinayon, M.D.
Tasanee Leebnark, M.D.
Vera Sathira-ngkura, M.D.
Nam-Oy Pakdewong, Ph.D.
Henrik Eriksson, Ph.D.
Wanapa Sritanyarat, Ph.D.
Irena Dychawy Rosner, Ph.D.
Pimol Rienvatanak, Ph.D.
Prasen Tanguyenongwatana, Ph.D.
Salfarina Ramli, Ph.D.
Songsak Petmitr, Ph.D.
Suraporn Tangvarasittichai, Ph.D.
Rungsum Tungtrongchitr, Ph.D.
Virun Vichaib, Ph.D.
Wantika Kruanamkhum, Ph.D.
Acharawan Thongmee, Ph.D.
Thamolwan Suwanarunsawat, Ph.D.
Patamporn Sukpliang, Ph.D.
Watanee Jenchir, M.D.
Thareerat Raktrakulwittaya, O.D.
Prut Harunsaha, Ph.D.
Morakot Tanheksakdi, O.D.
Rumpa Boonsinsukh, Ph.D.
Pompimol Charntaraviroj
Kanjanaphak Suriyaprom, Ph.D.
Sawanya Pongparit
Thaworncha Limjindaporn, M.D., Ph.D.
Chitsuda Chaisakdanuguil, Ph.D.
Vanna Tulyathan, Ph.D.
Penkhae Wanchaitanaowong, Ph.D.
Pongthep Suthavaravat, Ph.D.
On-anong Kungsdanumpai, Ph.D.
Surang Leelawat, Ph.D.
Sarinee Krittiyanun
Suchada Jongrunguangchok, Ph.D.
Supakit Wongwiwatthanakui, Ph.D.
Phensri Thongnopnua, Ph.D.
Poj Kulvanich, Ph.D.
Laksana Charoenchai, Ph.D.
Pawinee Piyaachaturawat, Ph.D.

Editorial Board

Professor, Mahidol University, Thailand
Honorary Professor, The University of Manchester, United Kingdom
Professor, College of Pharmacy, IPS Academy, India
Clinical Professor, Rangsit University, Thailand
Associate Professor, Rangsit University, Thailand
Rangsit University, Thailand
Professor, Mälardalen University, Sweden
Khon Kaen University, Thailand
Professor, Malmö University, Sweden
Associate Professor, Rangsit University, Thailand
Rangsit University, Thailand
Universiti Teknologi Mara, Malaysia
Professor, Mahidol University, Thailand
Associate Professor, Naresuan University, Thailand
Professor, Mahidol University, Thailand
Rangsit University, Thailand
Rangsit University, Thailand
Assistant Professor, Rangsit University, Thailand
Associate Professor, Rangsit University, Thailand
Assistant Professor, Rangsit University, Thailand
Rangsit University, Thailand
Rangsit University, Thailand
Associate Professor, Rangsit University, Thailand
TRSC international LASIK Center, Thailand
Assistant Professor, Srinakharinwirot, Thailand
Assistant Professor, Saint Louis College, Thailand
Associate Professor, Rangsit University, Thailand
Assistant Professor, Rangsit University, Thailand
Associate Professor, Mahidol University, Thailand
Rangsit University, Thailand
Professor, Chulalongkorn University, Thailand
Associate Professor, Kasetsart University, Thailand
Assistant Professor, Prince of Songkla University, Thailand
Associate Professor, Rangsit University, Thailand
Assistant Professor, Rangsit University, Thailand
Associate Professor, Rangsit University, Thailand
Associate Professor, University of Hawai‘i at Hilo, USA
Professor, Rangsit University, Thailand
Associate Professor, Rangsit University, Thailand
Rangsit University, Thailand
Professor, Mahidol University, Thailand
Research is not a static event; collaboration on makes research stronger. The appropriate public forum for each series of experiments is as important as appropriately controlling for variables in an experiment. Given the climate of science, we should be trying to increase the locations where research can be done and foster scientific creativity. We should not be trying to hide research away for the benefit of a limited group of people. If funding comes from public sources, the results should also be made public. These results belong to the people that will undoubtedly benefit from any new scientific paper published, no matter the area of science. Our journal will helpfully provide this information to the community, with the help of our researchers and scientific editorial board.

The Bulletin of Health, Science and Technology (BHST) is the scientific journal and it is published in English, the most commonly-used language in the world. It is easy for researchers and interested people to understand new information. Knowledge is in exponential growth phase and BHST serves interesting articles including review article, original article, short report, case report, note and letter to editor.

The objective of BHST, a peer-reviewed journal and fast publication, is to publish up-to-date and high quality knowledge of health, science, technology, biomedical and socio-medical sciences. The readers and scientists that pick up this volume and future volumes will gain information across many areas of biology and should be able to apply something to their own research. We are a part of the collaboration process and can help disseminate information to the scientific community. Research is done in incremental steps, rarely are extreme jump in technology made. Small advances in knowledge are what fuel the community. Our hope is to be an interactive part of this process, helping to share the collective knowledge of researchers in Thailand and abroad and add to the foundation of science. In addition, we prepare an easy way to submit manuscripts via online-submission (www.rsu.ac.th/bhst) at any time.

The editorial board would like to thank all those having made it possible to bring out this volume. Foremost, we thank the contributors who could contribute articles for this volume, despite their heavy schedule. We also place on record our great appreciation of those colleagues who have placed at our disposal their valuable time for doing the editing and proof-reading. Finally, the editorial board would be glad to receive comments and suggestions from the readers with a view to improve the quality of this journal.
Research article

<table>
<thead>
<tr>
<th></th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>WHAT A PHARMACIST/PRACTITIONER SHOULD KNOW ABOUT EVALUATING SYSTEMATIC REVIEWS AND META-ANALYSES</td>
<td>01-12</td>
</tr>
<tr>
<td></td>
<td>Brianna Blakesley, Thanapat Songsak, Thittima Wattanavijitkul, Louis Lteif and Supakit Wongwitatthanamukit</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>DETERMINATION OF SWERTIAMARIN CONTENT BY TLC-DENSITOMETER IN FAGRAEA FRAGRANS ROXB. LEAVES</td>
<td>13-18</td>
</tr>
<tr>
<td></td>
<td>Apichai Songprapai, Piyarat Thongphasak and Thanapat Songsak</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>PHARMACOCGNOSTIC EVALUATION OF FRUITS OF DATURA METEL VAR. FASTUOSA (L.) SAFF. AND THEIR SCOPOLAMINE CONTENTS BY HIGH PERFORMANCE LIQUID CHROMATOGRAPHY</td>
<td>19-26</td>
</tr>
<tr>
<td></td>
<td>Somchai Issaravanich, Channida Palanuwej and Nisorn Ruangrungsri</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>CYTOTOXIC ACTIVITY OF 4H-CHROMENES ON COLO 205 HUMAN COLON ADENOCARCINOMA CELL LINE</td>
<td>27-32</td>
</tr>
<tr>
<td></td>
<td>Nalinee Pradubya, Suchada Jongruangruangchok and Thanapat Songsak</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>METHOD VALIDATION AND QUANTITATION OF SODIUM NITRATE IN 0.5% SODIUM NITRATE MOUTHWASH FOR SMOKING CESSATION</td>
<td>33-39</td>
</tr>
<tr>
<td></td>
<td>Chaowalit Monton, Bavornlak Boonkrungthong, Sukanya Setharaksai, Natavat Charnka, Lukman Suereee, Laksana Charoenchait and Jirapornchait Suksaeree</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>ION RELEASED FROM FASHION ORTHODONTIC BRACKETS AND STANDARDIZED ORTHODONTIC BRACKETS IN ARTIFICIAL SALIVA</td>
<td>40-46</td>
</tr>
<tr>
<td></td>
<td>Suthapar Sirirunotat and Santi Boonyagul</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>THE ROLE OF GDA NUTRITION LABELLING OF YOUNG FDA LEADERS AT SECONDARY SCHOOL IN CHAINAT PROVINCE</td>
<td>47-58</td>
</tr>
<tr>
<td></td>
<td>Arunrut Arunmuang and Pogamas Maitreemit</td>
<td></td>
</tr>
<tr>
<td>Research article</td>
<td>Page</td>
<td></td>
</tr>
<tr>
<td>------------------</td>
<td>------</td>
<td></td>
</tr>
<tr>
<td>8 STABILITY STUDIES OF EXTREMEOUS ZINC SULFATE INJECTIONS FOR HOSPITAL USE</td>
<td>59-63</td>
<td></td>
</tr>
<tr>
<td>: Piyawat Chaivichacharn, Papitchaya Bunditrittidej, Pitcha Phommasorn, Watcharaphong Chaemsawang, Sompol Prakongpnan and Puttiporn Khongkaew</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9 ANTIBACTERIAL ACTIVITY AND FORCED DEGRADATION STUDY OF CAESALPINIA SAPPHAN L. HEARTWOOD EXTRACT FOR INHIBITING PUS-FORMING BACTERIA</td>
<td>64-69</td>
<td></td>
</tr>
<tr>
<td>: Sukanya Settharaksa, Pathamaporn Pathompak, Fameera Madaka and Chaowalit Monton</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10 TRANSDERMAL MELATONIN DELIVERY SYSTEM FOR INSOMNIA TREATMENT</td>
<td>70-76</td>
<td></td>
</tr>
<tr>
<td>: Chaowalit Monton, Jiraporntch Suksaereee and Laksana Charoenchait</td>
<td></td>
<td></td>
</tr>
<tr>
<td>11 ESSENTIAL OIL CONSTITUENTS AND BIOLOGICAL ACTIVITIES OF PIPER RIBESOIDES LEAVES ENDEM TO THAILAND</td>
<td>77-85</td>
<td></td>
</tr>
<tr>
<td>: Supawan Bunrathep, Suchada Jonrunruangchok and Nisiri Ruangrungr</td>
<td></td>
<td></td>
</tr>
<tr>
<td>12 CHEMICAL CONSTITUENTS AND IN VITRO ANTIOXIDANT ACTIVITIES OF ESSENTIAL OIL FROM CURCUMA LEUCORRHIZA ROXB. RHIZOME</td>
<td>86-96</td>
<td></td>
</tr>
<tr>
<td>: Orawan Theanphong, Withawat Mingvanish and Thaya Jenjittikul</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Appendix

Appendix A – Instruction For Author

**
ION RELEASED FROM FASHION ORTHODONTIC BRACKETS AND STANDARDIZED ORTHODONTIC BRACKETS IN ARTIFICIAL SALIVA

Suthapar Sriarunotai¹ and Sani Boonyagul²

¹Lecturer at Faculty of Dental Medicine, Rangsit University, 52/347 Paholyothin road, Lak-hok, Meung, Pathumthani
²Lecturer at Faculty of Biomedical Engineering, Rangsit University, 52/347 Paholyothin road, Lak-hok, Meung, Pathumthani

* Suthapar Sriarunotai: E-mail: stpsarnrt@gmail.com

Abstract: Fashion orthodontics has become a trend in Thai teenager as to mimic the orthodontic looks not treatment. This has done through illegal and risking poorer oral hygiene and systemic condition. However, there is no academic evidence about this situation in fashion brackets. The purpose of this study was to compare the quantity of metal ions releasing from fashion and standardized orthodontic brackets in artificial saliva at pH 3.75 and pH 6.25. Samples were divided into 2 groups of standardized pre-adjustable brackets (3M/Unitek) and fashion brackets (randomly gathering from local market and social network in Thailand). Each samples comprised of 5 metal brackets. Samples were immersed in artificial saliva at pH 3.75, 6.25 and store in shaking incubator at 37°C for 28 days. The energy dispersive spectroscopy (EDS) was used to identify metal ions before immersion. Afterwards, the saliva was tested for Copper, Nickel, Iron, and Chromium ion using inductively couple plasma-optical emission spectroscopy (ICP-OES). All specimens were passed through surface analysis using scanning electron microscopy (SEM) both before and after immersion. Fashion brackets showed high amount of Ni ion released at pH 3.75 and pH 6.25 with 5175.67 and 4808.833 μg/L respectively. The ratio of Ni-ions released between standardized and fashion bracket at pH 6.25 was 1:20.5, for Cu ion was 1:4.8. At pH 3.75 Ni, Fe and Cr showed the ratio of 1:1,461, 1:4 and 1:8.7, respectively. In conclusion, significantly higher level of metal ions released from fashion orthodontic brackets than from standardized orthodontic brackets. Especially Ni ion released from the fashion brackets in both pH 3.75 and pH 6.25 were 100 times over the daily dietary intake and double times for causing allergic reaction.

Keywords: Fashion brackets; Ion release
INTRODUCTION

Thailand was stated to become the first country to have orthodontics as a non-medical treatment (Vachiraroppisarn, 2009). This so-called "fashion orthodontics" trend has drawn attention from all over the world (Vachiraroppisarn, 2009; Satravaha, 2005). The fashion orthodontic appliances are replicas of standardized appliances in terms of their shapes and appearances. Rityoue and Sasawongsaroj (2008) reported that the situation of fashion orthodontics had developed much further in uncontrollable manners.

Many previous studies demonstrated that various types of heavy metals were released from orthodontic appliances through long period of treatments. Considerable quantities of heavy metals had been released from the appliances as products because of corrosion (Locci et al, 2000). According to a study by Kukta et al (2009), Cu, Fe, Ni, Cr, Zn were released from stainless steel wire and the largest number of ion was released during the first week of appliance immersion. Also, types of releasing ion depended on wire composition but their quantities were not proportional to the content of metal in the wire. An experiment on orthodontic brackets by Huang et al (2004) also showed similar results. They found that copper ion was the highest amount followed by Ni, Cr, Fe, Cu, Co, and Mn. Moreover, various experiments showed that lowering of pH and increasing immersion time increased metal ions release (Huang et at, 2003, 2004; Staffolani et al, 1999). According to Staffolani et al (1999), At the same pH level either organic or inorganic content demonstrated no difference in metal ion released. Furthermore, releasing of metal ion in dynamic condition (functional stress) found higher nickel released than in static condition (Kerosuo et al, 1995). Also, a larger number of metal ions released was found from recycled brackets compared to that of newer brackets (Huang et at, 2004). A few experiments were performed in vivo with various outcomes, as the result of Amini et al (2012) stated that an increased in nickel ions released in those receiving orthodontic treatment compared to those who did not. In contrary, the study of Eliades et al (2003) stated no significant difference.

However, there is no academic evidence about this situation in fashion brackets. Currently, illegal businesses had been manufacturing orthodontic appliances in various areas and had been spreading through social network markets (Vachiraroppisarn, 2009; Satravaha, 2005). Therefore, this study was to create the appropriate viewpoint by guiding the public away from this harmful act and to propose solutions for this situation.

The purpose of the study was to investigate the differences in quantity of metal ions release from fashion and standardized orthodontic appliances in artificial saliva.

MATERIALS AND METHODS

Samples were divided into 2 groups of standardized pre-adjustable brackets (3M/Unitek) and fashion brackets (randomly gathering from local market and social network in Thailand). Each group was split to immerse in modified Fusayama artificial saliva at pH 3.75 and 6.25. All specimens were cleaned in ultrasonic cleaning bath and rinsed with 70% alcohol before the immersion tests and separately immersed for 28 days in shaking incubator (n=6).

Surface Characterization analysis

Surface morphology and surface elemental compositions of the non-immersed were observed by scanning electron microscope (SEM) with an energy-dispersive spectrometer (EDS) (Jeol, Japan) before immersion.
Inductively coupled plasma optical emission spectroscopy analysis

The collected artificial saliva samples were subjected to Inductive Coupled Plasma-Optical Emission Spectroscopy (ICP-OES) (optima 7300 DV, Perkin elmer, USA). Approximately of 10 ml of experimental saliva was added in a vessel and saliva sample was dried under heating with infrared radiation. The Cr, Cu, Fe and Ni contents were determined using calibration curves. An internal standard mixing kit (Perkin elmer, USA) was employed for introducing the internal standard solution and the non-immersed artificial saliva was used as the blank.

Statistical Analysis

The log10 of results were tested for normality of distribution using Shapiro-Wilk’s normality test. All samples were normally distributed hence paired-samples T tests was used to test for significant.

RESULTS AND DISCUSSION

Surface Characterization analysis

Figure 1 showed SEM micrographs before and after immersion in artificial saliva (pH 3.75) at 5000x. All samples showed the similar patterns of longitudinal shallow grooves surrounding with homogenous surfaces.

Figure 1. (a) Standard brackets before immersion at 5000x. (b) Fashion brackets before immersion at 5000x. (c) Standard brackets after immersion in artificial saliva (pH 3.75) at 5000x. (d) Fashion brackets after immersion in artificial saliva (pH 3.75) at 5000x. (e) Standard brackets after immersion in artificial saliva (pH 6.25) at 5000x. (f) Fashion brackets after immersion in artificial saliva (pH 6.25) at 5000x.
EDS

The results from EDS found that there are similar metal ions components on both groups. Standard brackets mainly contained Fe and Cr, which were 70.32% and 14.56% respectively while there were 3.40% of Ni and 0.87% of Cu. Also, fashion orthodontic brackets contained Fe in the highest percentage as 66.85%, followed by Cr as 15.48%, Ni as 3.83% and Cu as 0.41%. Furthermore, there were traces of Al, Cu, As and Pb but less than 1% in both groups (Table 1).

<table>
<thead>
<tr>
<th>EDS (%) (Before immersion)</th>
<th>C</th>
<th>Cr</th>
<th>Fe</th>
<th>Ni</th>
<th>Cu</th>
<th>Al</th>
<th>Pb</th>
</tr>
</thead>
<tbody>
<tr>
<td>Standardized brackets</td>
<td>9.88±</td>
<td>14.56±</td>
<td>70.33±</td>
<td>3.40±</td>
<td>0.87±</td>
<td>0.31±</td>
<td>0.06±</td>
</tr>
<tr>
<td></td>
<td>1.11</td>
<td>0.42</td>
<td>1.50</td>
<td>0.20</td>
<td>0.23</td>
<td>0.1</td>
<td>0.04</td>
</tr>
<tr>
<td>Fashion brackets</td>
<td>13.03±</td>
<td>15.48±</td>
<td>66.85±</td>
<td>3.83±</td>
<td>0.41±</td>
<td>0.17±</td>
<td>0.10±</td>
</tr>
<tr>
<td></td>
<td>4.55</td>
<td>0.66</td>
<td>3.46</td>
<td>0.40</td>
<td>0.13</td>
<td>0.02</td>
<td>0.04</td>
</tr>
</tbody>
</table>

ICP-OES

After immersion in artificial saliva at pH 6.25 for 28 days, ions release from standard orthodontic brackets showed average values as 216.87 µg/L of Ni while Cr, Cu and Fe ions could not detected. From fashion brackets the mean ions releases were 4808.83 µg/L of Ni and 21.24 µg/L of Cu whereas Cr and Fe ions could not detected (Figure 2, 3, 4, 5).

At pH 3.75, the mean amount of Cr, Cu, Fe and Ni ion releases from standard orthodontic brackets were 9.19, 0, 131.83 and 35.42 µg/L, respectively. On the other hand, the average level Cr, Cu, Fe and Ni ion releases from fashion brackets were 80.65, 127.70, 538.75 and 51751.67 µg/L (Figure 2, 3, 4, 5).

Figure 2. Concentrations of nickel ion (µg/L) release from standardized and fashioned brackets after immersion in artificial saliva at pH 6.25 and pH 3.75 for 28 days. *Significant difference compared between specimens in different pH and between standardized and fashioned samples; p<0.05, n=6
Figure 3. Concentrations of iron ion (µg/L) release from standardized and fashioned brackets after immersion in artificial saliva at pH 6.25 and pH 3.75 for 28 days. *Significant difference compared between specimens in different pH and between standardized and fashioned samples; p<0.05, n=6

Figure 4. Concentrations of chromium ion (µg/L) release from standardized and fashioned brackets after immersion in artificial saliva at pH 6.25 and pH 3.75 for 28 days. *Significant difference compared between specimens in different pH and between standardized and fashioned samples; p<0.05, n=6

Figure 5. Concentrations of copper ion (µg/L) release from standardized and fashioned brackets after immersion in artificial saliva at pH 6.25 and pH 3.75 for 28 days. *Significant difference compared between specimens in different pH and between standardized and fashioned samples; p<0.05, n=6
The results of SEM showed variations of surface morphology before and after immersion in both standardized brackets and fashion brackets. According to Eliades et al (2003), corrosion in the form of pitting can occur in brackets and wires. A pit is considered as a pore with a depth equal to its width. Interestingly, initiation of the process may take place before intraoral placement since excessively porous surfaces were found on as-received product.

Before immersion test, there were 5 elements detected by using EDS in both standardized brackets and fashion brackets. Those 5 elements were Iron (Fe), Chromium (Cr), Carbon (C), Nickel (Ni), and Copper (Cu). After 28 days of immersion in both pH values, all results showed no particular difference in surface analysis. There were minor amounts of Carbon and Oxygen detect from EDS. In addition, Fe and Cr always shown to be main elements in orthodontic brackets, similar to as recent studies (Shintcovsk et al, 2015; Zenelis et al, 2004).

Pseudo-orthodontics wires distributed around Bangkok area were composed of hazardous composition, such Cd, Pb and As (Rityoue and Sasawongsaroj, 2009). However, the evidence of metal ions released from fashion brackets had never been reported. On the other hand, from EDS results in this study, these hazardous compositions could not be detected from fashion brackets.

From ICP-EOS, the results showed significant differences in all values between fashion and standardized brackets in pH 3.75. Especially, fashion brackets showed dramatically differences of Ni ion release in pH 3.75 and pH 6.25 were 51,751.67 µg/L and 4,808.833 µg/L, respectively. Both values were over the critical values of Ni for causing allergic reactions (600-2500µg/L), and the daily dietary intake (300-600 µg/L) (Kaaber et al, 1978; Schroeder et al, 1962). The ratio of Ni-ions release at pH 6.25 between standard and fashion brackets was 1:135.76, and that of Cu ion was 1:21.24. In addition, at pH 3.75, Ni, Cu, Fe and Cr showed the ratio of 1:238.61, 1:127.70, 1:4.08 and 1:8.77, respectively. The results also showed increases in ions release as the pH decrease, similar to the study from Staffolani et al (1999). The result showed that Ni release of fashion brackets in both pH were drastically higher than standardized brackets. It could be explained that the manufacturing process might be different and affected to metallurgical qualities.

In pH 3.75, the amount of releasing ions were higher than in pH 6.25 except Cu ion in standardized brackets that was not detected in both pH. Similarly to the recent reports, the pH value of artificial saliva influenced the number of ions released (Kuhta et al, 2009; Huang et at, 2003, 2004).

Many researchers observed allergic reactions associated with the use of metals. An example was a case of cutaneous hypersensitivity on metal contact to oral mucosa. A condition, which could be seriously developed in-patient with history of allergy (Genelhu et al, 2005; Schultz and Connelly, 2004). Nickel also caused allergic gingivitis (Ramadan, 2004), DNA damage in oral mucosa cells and inhibition of DNA synthesis (Faccioni et al, 2003).

Other factors regarding fashion orthodontics that could be considered hostile were not considered. Such things like bonding agents or elastomeric rings would also be required further studies. Further investigation regarding cytotoxicity from fashion orthodontic is also considered plausible (Vande et al, 2007).

CONCLUSION

This study confirms the hypothesis that significantly higher level of metal ions was released from fashion orthodontic appliances than that from standardized orthodontic
appliances. Especially, the Ni ion released was over the critical values and daily dietary intakes which caused allergic reaction and DNA damages.

ACKNOWLEDGMENT

This study was granted by Research Institute of Rangsit University.

REFERENCES

ตัวอย่างสุทธิลักษณะการมีส่วนร่วมในผลงานวิชาการ

- บทความวิชาการ (บทความวิจัยในวารสารวิชาการ)

- ต่างระ หนังสือ งานวิจัย ผลงานวิชาการในลักษณะอื่น

รูปแบบ: Ion released from fashion orthodontic brackets and standardized orthodontic brackets in artificial saliva

ผู้ร่วมงานจำนวน 2 คน แต่ละคนมีส่วนร่วมดังนี้:

<table>
<thead>
<tr>
<th>ชื่อผู้ร่วมงาน</th>
<th>ปริมาณงานร้อยละ และหน้าที่ความรับผิดชอบ</th>
</tr>
</thead>
<tbody>
<tr>
<td>3. แพทย์.สุชาดา ศรีรุ่งยาหิย</td>
<td>50% โดยมีหน้าที่ดังนี้</td>
</tr>
<tr>
<td></td>
<td>- สิบคัน และรวมรวมข้อมูล</td>
</tr>
<tr>
<td></td>
<td>- จัดหาอุปกรณ์สำหรับวิจัย</td>
</tr>
<tr>
<td></td>
<td>- ทำการวิจัย</td>
</tr>
<tr>
<td></td>
<td>- เขียนบทความวิจัย</td>
</tr>
<tr>
<td>4. ดร.ศุภ สุภิญยุก</td>
<td>50% โดยมีหน้าที่ดังนี้</td>
</tr>
<tr>
<td></td>
<td>- สิบคัน และรวมรวมข้อมูล</td>
</tr>
<tr>
<td></td>
<td>- ออกแบบการวิจัย</td>
</tr>
<tr>
<td></td>
<td>- ทำการวิจัย</td>
</tr>
<tr>
<td></td>
<td>- เขียนบทความวิจัย</td>
</tr>
</tbody>
</table>

หมายเหตุ

ลงชื่อ..
(แพทย์.สุชาดา ศรีรุ่งยาหิย)

ลงชื่อ..
(ดร. ศุภ สุภิญยุก)